1

Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Film Deposition Part VI: Wet Process

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

Film Deposition

Solution based Deposition

'wet' process

Examples

- Copper electroplating
- Silver electroless plating
- Liquid Phase Epitaxy (LPE)
- Spin-on glass
- Organics / Quantum Dots

Aluminum

- conductive
- reliable and stable
- easy deposition
- easy etching
- Iow diffusivity in Si and SiO₂
- good adhesion with Si and SiO₂
- Iow cost

.

Aluminum

- conductive
- reliable and stable
- easy deposition
- easy etching
- Iow diffusivity in Si and SiO₂
- good adhesion with Si and SiO₂

Iow cost

Copper

more conductive

VS.

Copper wins!

Reduces RC circuit delay, reduce power consumption

$t \sim RC$	Materials	Conductivity (10 ⁶ S/m)
$P \sim I^2 R$	Graphene (C)	100
	Silver (Ag)	63
below 130 nm —	Copper (Cu)	60
	Gold (Au)	43
above 130 nm —	Aluminum (Al)	38

- Al is cheap and easy to deposit
- Ag and Au are expensive
- Cu is cheap and conductive
- Carbon (graphene) is the best what is next, Ag or Carbon?

Step Coverage

CVD is preferred for via filling AI, W can be deposited by CVD but CVD Cu is very difficult ...

Copper Electroplating (电镀)

Printed Circuit Board

Video

Xing Sheng, EE@Tsinghua

Copper Electroplating (电镀)

11

F. Wang, et al., Sci. Rep. 7, 46639 (2017)

Damascene Process for Cu

ancient art work

P. C. Andricacos, et al., IBM J. Res. Develop. 42, 567 (1998)12

Damascene Process for Cu

Electroplating + CMP dirtiest process for the most advanced IC

Electroless Plating

silver mirror reaction

LPE - Liquid Phase Epitaxy

Liquid Phase Epitaxy (LPE)

 \Box 2Ga (I) + 2AsCl₃ (I) = 2GaAs (s) + 3Cl₂ (g)

Spin-on Glass (SOG)

Porous SiO₂ for Low *k* **Dielectric**

SiO₂

$$\kappa = 3.9$$

air
 $\kappa = 1.0$

prepared by spin-on methods

Organic Solar Cells

OLEDs

Fully Solution Processed Devices

ELECTRONICS

Exploiting the colloidal nanocrystal library to construct electronic devices

Ji-Hyuk Choi,^{1,2,3} Han Wang,⁴ Soong Ju Oh,^{1,5} Taejong Paik,¹ Pil Sung Jo,^{1,2} Jinwoo Sung,⁶ Xingchen Ye,⁷ Tianshuo Zhao,¹ Benjamin T. Diroll,⁷ Christopher B. Murray,^{1,7} Cherie R. Kagan^{1,4,7*}

Colloidal Quantum Dots

A colloidal quantum dot spectrometer

Jie Bao1,2,3 & Moungi G. Bawendi2 1.0 0.8 Intensity 9.0 0.4 0.2 0 400 450 500 550 600 650 Wavelength (nm) b 1.0 С 1.0 0.5 0.5 0.5 0 400 500 600 400 500 600 400 500 600

J. Bao and M. G. Bawendi, *Nature* **523**, 67 (2015) **21**

Xing Sheng, EE@Tsinghua

Perovskites (钙钛矿)

deposit by spin coating or evaporation

> 20 Nature/Science papers every year

solar cells

LEDs